Langsung ke konten utama

Kedudukan TItik-titik dan Jarak antara Dua Titik

Dua buah titik berbeda kan berada pada posisi yang berbeda. Jarak Kedua titik tersebut dapat ditentukan dengan langkah-langkah sebagai berikut :
  1. Buatlah dua titik berbeda yaitu A dan B lalu hubungkan dengan sebuah ruas garis.
  2. Buat sebuah garis melalui A dan sebuah garis lain yang melalui B sehingga kedua garis berpotongan tegak lurus.
  3. Tentukan titik potong kedua garis yaitu, C sehingga diperoleh segitiga siku-siku ACB atau BCA lalu ukur panjang ruas garis CA dan BC.
  4. Tentukan panjang ruas garis AB dengan menggunakan Teorema Phytagoras :
 
 Titik-titik pada sebuah bidang yang membentuk himpunan titik dan memenuhi suatu kriteria tertentu dinamakan kedudukan titik (locus of points). Kedudukan titik dapat dinyatakan sebagai fungsi. Misalkan titik-titik pada lingkaran berjari-jari 1 cm dapat dinyatakan sebagai  x2 + y2 = 1. Secara geometris, hanya titik-titik berjarak 1 cm dari titik pusat lingkaran tersebut yang memenuhi kedudukan titik yang dinyatakan oleh persamaan  x2 + y2 = 1.
Teorema-teorema dasar tentang kedudukan titik-titik (Fundamental Locus Theorems) sebagai berikut:


Teorema 1.1
Kedudukan titik-titik yang berjarak sama yaitu d dari sebuah titik P adalah sebuah lingkaran berpusat di titik P dengan ukuran panjang jari-jari d
Teorema 1.2
Kedudukan titik-titik yang berjarak sama yaitu d dari sebuah garis l  adalah sepasang garis-garis sejajar yang masing-masing berjarak d dari garis l
Teorema 1.3
Kedudukan titik-titik yang berjarak sama (equidistant) dari dua buah titik P dan Q adalah sebuah ruas garis (disebut perpendicular bisector).yang tegak lurus  terhadap ruas garis  dan membagi  menjadi dua bagian sama besar
Teorema 1.4
Kedudukan titik-titik yang berjarak sama dari dua garis yang sejajar yaitu l1 dan l2 merupakan sebuah garis diantara keduanya dan sejajar dengan kedua garis tersebut.
Teorema 1.5
Kedudukan titik-titik yang berjarak sama terhadap dua garis yang berpotongan yaitu l1dan l2, adalaha sepasang ruas garis (disebut bisectors) yang membagi dua sama besar sudut-sudut yang yang dibentuk garis l1dan l2
Teorema 1.6
Kedudukan titik-titik yang berjarak sama dari kedua sisi sebuah sudut adalah sebuah sinar yang membagi dua sudut tersebut (bisector of angle)
Teorema 1.7
Kedudukan titik-titik yang berjarak sama dari dua buah lingkaran konsentris (concentric circles) adalah sebuah lingkaran yang konsentris terhadap kedua lingkaran tersebut dan berada tepat di tengah keduanya
Teorema 1.8
Kedudukan titik-titik pada jarak tertentu dari sebuah lingkaran yang memiliki jari-jari lebih panjang dari jarak tersebut merupakan sebuah pasangan lingkaran konsentris, di mana masing-masing kedudukan titik tersebut berada di salah satu sisi lingkaran pada jarak tertentu tersebut.
Teorema 1.9
Kedudukan titik-titik yang berjarak tertentu dari suatu lingkaran berjari-jari kurang dari jarak tersebut merupakan sebuah lingkaran yang berada di luar lingkaran pertama dan saling konsentris.


Komentar

Postingan populer dari blog ini

Persamaan Bidang Singgung Bola (secara Geometri)

Halo, tomodachi !! :) seperti yang kalian tau, blog ini berisi tentang materi-materi geometri analitik. Nah, pada postingan sebelumnya kita banyak membahas materi-materi geometri dengan prinsip-prinsip aljabar. Kali ini, kita akan membahas materi geometri dengan prinsip geometri khususnya untuk postingan kali ini mengenai persamaan bidang singgung bola. So, let's started  contoh : Persamaan bidang singgung pada bola yang sejajar sumbu xy adalah... Langkah-langkah penyelesaian : 1.  Input persamaan bola dan tentukan titik pusat bola pada geogebra. 2. Input bidang xy, yaitu bidang z = 0  3. Buat ruas garis (diameter) pada bola yang sejajar sumbu z, kemudian buat titik di ujung-ujung diameter pada permukaan bola sehingga didapat titik A dan B seperti gambar berikut.  4. Buat bidang singgung bola yang sejajar dengan bidang z = 0 dengan menggunakan menu bidang sejajar . Klik titik A kemudian bidang z = 0 sehingga didapat bidang singgung yang sejajar ...

Parabola

A. Pengertian Parabola Parabola adalah tempat kedudukan titik-titik sehingga jaraknya ke suatu titik tertentu (titik fokus) sama dengan jaraknya ke sebuah garis tertentu (garis direktris). Nilai eksentrisitas parabola adalah e = 1. B. Unsur-unsur Parabola Unsur-unsur parabola adalah sebagai berikut : Titik B (x,y) adalah sembarang titik yang terletak pada parabola Titik Fokus Garis direktris  Titik Puncak Sumbu simetris Latus rektum (garis L1 L2) C. Grafik Persamaan Parabola Parabola dengan Puncak O (0,0) Parabola dengan Puncak P (a, b) contoh soal : 1. Tentukan persamaan parabola jika titik puncak dan titik fokusnya berturut-turut P(-2, 5) dan F(3, 5). Penyelesaian : 2. Persamaan parabola yang titik apinya F(4, 3) dan garis arahnya y + 1 = 0 adalah ... Penyelesaian : karena titik apinya F (4, 3) maka titik pusat parabola tersebut adalah P (a, b) dan karena garis arahnya adalah y = -1 , maka parabola terbu...

Contoh Soal dan Pembahasan Tentang Irisan Kerucut Menggunaka Geogebra

Postingan kali ini, kita akan membahas tentang langkah-langkah penyelesaian beberapa soal mengenai materi Irisan Kerucut menggunakan Geogebra. Tanpa basa-basi lagi, yuk simak penjelasannya berikut ini ^_^ 1. Tentukan persamaan garis singgung pada ellips yang tegak lurus garis 2x-3y-13=0 jika diketahui persamaan ellips tersebut adalah Penyelesaian : Langkah-langkah : input persamaan ellips dan garis yang diketahui buat sebuah garis yang tegak lurus dengan garis 2x-3y-13=0 menggunakan menu Perpendicular Line   buat garis singgung ellips menggunakan menu Garis Singgung . kemudian klik garis yang tegak lurus dengan garis 2x-3y-13=0, lalu ellips sehingga didapat garis singgung pada ellips yang tegak lurus dengan garis 2x-3y-13=0 Persamaan garis singgungnya adalah  garis warna biru garis warna orange 2.  Tentukan persamaan garis singgung pada hiperbola yang sejajar garis 4y-x+1=0 apabila persamaan hiperbola tersebut adalah ...