Langsung ke konten utama

Persamaan Bidang pada R3

1. Persamaan Bidang Sejajar Sumbu Z

Jika diketahui titik A (a, b, 0) dan vektor
adalah vektor posisi titik A, maka persamaan bidang P yang melalui titik A dan sejajar sumbu z adalah



Contoh : Tentukan persamaan bidang yang melalui titik A (5, 3, 0) dan sejajar sumbu z.

penyelesaian : A(5, 3, 0) pada bidang xy, maka vektor posisi titik A (5, 3, 0) adalah 


persamaan bidang yang didapat adalah :



2. Persamaan Bidang Sejajar Sumbu X

Jika diketahui titik A (0, b, c) dan vektor
adalah vektor posisi titik A, maka persamaan bidang Q yang melalui titik A dan sejajar sumbu x adalah 



3. Persamaan Bidang Sejajar Sumbu Y

Jika diketahui titik A (a, 0, c) dan vektor
adalah vektor posisi titik A, maka persamaan bidang B yang melalui titik A dan sejajar sumbu y adalah



4. Persamaan Bidang melalui 3 Titik

persamaan bidang yang melalui titik A, B, dan C adalah :


Contoh : Persamaan bidang yang melalui P(0, 0, 0), Q(1, 3, 2), R(3, 1, -2) adalah ...
penyelesaian :
jadi, persamaan bidang yang melalui titik P, Q, dan R adalah x - y + z = 0



Komentar

Postingan populer dari blog ini

Persamaan Bidang Singgung Bola (secara Geometri)

Halo, tomodachi !! :) seperti yang kalian tau, blog ini berisi tentang materi-materi geometri analitik. Nah, pada postingan sebelumnya kita banyak membahas materi-materi geometri dengan prinsip-prinsip aljabar. Kali ini, kita akan membahas materi geometri dengan prinsip geometri khususnya untuk postingan kali ini mengenai persamaan bidang singgung bola. So, let's started  contoh : Persamaan bidang singgung pada bola yang sejajar sumbu xy adalah... Langkah-langkah penyelesaian : 1.  Input persamaan bola dan tentukan titik pusat bola pada geogebra. 2. Input bidang xy, yaitu bidang z = 0  3. Buat ruas garis (diameter) pada bola yang sejajar sumbu z, kemudian buat titik di ujung-ujung diameter pada permukaan bola sehingga didapat titik A dan B seperti gambar berikut.  4. Buat bidang singgung bola yang sejajar dengan bidang z = 0 dengan menggunakan menu bidang sejajar . Klik titik A kemudian bidang z = 0 sehingga didapat bidang singgung yang sejajar ...

Contoh Soal Bola dan Persamaan bidang Singgung Bola beserta Penyelesaiannya Menggunakan Geogebra

Postingan kali ini, kita akan membahas tentang langkah-langkah penyelesaian beberapa soal mengenai materi Bola dan Irisan Kerucut menggunakan Geogebra. Tanpa basa-basi lagi, yuk simak penjelasannya berikut ini A. Bola Contoh Soal: 1.  Persamaan bola yang berjari-jari 3 dan menyinggung bidang yz di titik (0, 2, 5) adalah ... Penyelesaian : aktifkan grafik  3D pada Geogebra buat titik (0, 2, 5) dan bidang yz (x = 0) karena jarak titik singgung ke pusat bola adalah jari-jari, maka pusat bola tersebut adalah P (3, 2, 5) buat bola dengan menggunakan menu Bola dengan Pusat melalui Titik . sehingga didapat bola seperti gambar di bawah ini  sehingga persamaan bola tsb. dapat kita lihat di sebelah kiri jendela Geogebra, yaitu 2. Carilah persamaan bola dengan pusat (1, 1, 4) dan menyinggung bidang x + y = 12. Penyelesaian : Aktifkan grafik 3D Input pusat bola dan bidang x + y = 12 Pilih menu  Perpendicular Line pada menu 3D. Klik...

Parabola

A. Pengertian Parabola Parabola adalah tempat kedudukan titik-titik sehingga jaraknya ke suatu titik tertentu (titik fokus) sama dengan jaraknya ke sebuah garis tertentu (garis direktris). Nilai eksentrisitas parabola adalah e = 1. B. Unsur-unsur Parabola Unsur-unsur parabola adalah sebagai berikut : Titik B (x,y) adalah sembarang titik yang terletak pada parabola Titik Fokus Garis direktris  Titik Puncak Sumbu simetris Latus rektum (garis L1 L2) C. Grafik Persamaan Parabola Parabola dengan Puncak O (0,0) Parabola dengan Puncak P (a, b) contoh soal : 1. Tentukan persamaan parabola jika titik puncak dan titik fokusnya berturut-turut P(-2, 5) dan F(3, 5). Penyelesaian : 2. Persamaan parabola yang titik apinya F(4, 3) dan garis arahnya y + 1 = 0 adalah ... Penyelesaian : karena titik apinya F (4, 3) maka titik pusat parabola tersebut adalah P (a, b) dan karena garis arahnya adalah y = -1 , maka parabola terbu...